Predictive models of fecal microbial biomarkers for obesity trajectories in preschool children

Mentor: Prof., Dr. Anita Kozyrskyj | Mentee: Xin (David) Zhao

Facts and innovation

- 1. Children in Canada were often referred to the weight management services as late as teen or tween.
- Predictive model: see invisible signs
- 2. Existing models mostly predict the static status of obesity at single time point.
- BMI trajectory: age-of-onset, intensity, duration
- 3. Data availability increases of (infant) gut microbiota.
- Fecal biomarkers: diagnosis and therapeutics

Can fecal microbial features improve the prediction of childhood BMI trajectory?

Precision Medicine

Outcome variable

high-risk*= Early onset and sustained obesity trajectory

low 0-65%; medium 65-85%; high 85-100% posterior probability

Covariables associated with the high-risk group

Sample size (stool samples at 3 months)

$\sum = 2450$ stool samples (507 repeat measurements) = 1625 SyMBIOTA + 825 Turvey

12/6/2022

Stool samples were collected at 3 months of age

Merge OTU tables from two labs-1

Merge OTU tables from two labs-2

12/6/2022

7

Merge OTU tables from two labs-3

Pipeline for machine learning modeling

Feature selection

Feature selection was performed on the train set.

- Filter method (univariate association)
- o pros: features importance (eg. effect size)
- o cons: subjective determination of threshold (features number)

• Wrapper method (Recursive feature elimination, RFE)

- o pros: optimal feature number and combination
- cons: algorithm-dependent

Filter method

Genus taxonomy [effect size] cut-off p<0.05g_Oscillospira [0.08] \checkmark g_Blautia [0.07] \checkmark f_Rikenellaceae.g_[0.07] \checkmark g_Haemophilus [0.06] \checkmark g_Phascolarctobacterium [0.06] \checkmark g_Parabacteroides [0.04] g_Staphylococcus [0.04]

Feature number: 4-6 (out of 42), depending on algorithms

Regularized logistic regression model-dependent

Menu of predictive models: Internal validation

Train set (75%)

Model ¹	Model compartments						
	~microbe ³	~microbe + lab	~microbe + city	~microbe + gender	~microbe + lab + city + gender		
RegLog	0.68 (0.62, 0.74)	0.70 (0.66, 0.73)	0.70 (0.64, 0.76)	0.69 (0.62, 0.75)	0.69 (0.62, 0.76)		
GLM	0.68 (0.63, 0.73)	0.68 (0.63, 0.72)	0.69 (0.63, 0.74)	0.68 (0.62, 0.74)	0.69 (0.64, 0.73)		
Random Forest	0.58 (0.50, 0.64)	0.62 (0.58, 0.65)	0.62 (0.55, 0.67)	0.61 (0.53, 0.69)	0.62 (0.53, 0.67)		
XGBoost	0.63 (0.56, 0.70)	0.64 (0.58, 0.69)	0.67 (0.61, 0.73)	0.65 (0.60, 0.70)	0.65 (0.59, 0.70)		
GLMM ²	0.80 (0.77, 0.83)	0.78 (0.76, 0.80)	0.80 (0.77, 0.82)	0.81 (0.78, 0.84)	0.81 (0.78, 0.84)		

¹The experimental unit for the models, RegLog, GLM, RF and XGBoost was observations (i.e., stool samples); whereas the experimental unit was infants for the GLMM model.

²GLMM: generalized linear mixed model. In GLMM, participants are the experimental unit. Lab, city, and participants identify served as (crossed) random-effect variables while the infant gender and genera abundance as fixed-effect variables in the model.

³Microbe predictors used in all the models consist of f_*Rikenellaceae.g_*, g_*Blautia*, g_*Oscillospira*, g_*Haemophilus*, and g_*Phascolarctobacterium*.

Menu of predictive models: External validation

Test set (25%)

Model ^L	Model compartments						
	~microbe ³	~microbe + lab	~microbe + city	~microbe + gender	~microbe + lab + city + gender		
RegLog	0.69 (0.59, 0.79)	0.67 (0.56, 0.77)	0.70 (0.59, 0.80)	0.66 (0.55, 0.77)	0.68 (0.57, 0.78)		
GLM	0.70 (0.60, 0.78)	0.69 (0.58, 0.78)	0.69 (0.58, 0.78)	0.68 (0.57, 0.78)	0.67 (0.55, 0.77)		
Random Forest	0.55 (0.43, 0.67)	0.56 (0.43, 0.68)	0.57 (0.44, 0.69)	0.59 (0.45, 0.70)	0.63 (0.51, 0.76)		
XGBoost	0.59 (0.44, 0.72)	0.63 (0.49, 0.75)	0.61 (0.48, 0.74)	0.65 (0.50, 0.77)	0.68 (0.55, 0.80)		
GLMM ²	0.82 (0.70, 0.92)	0.75 (0.63, 0.85)	0.82 (0.68, 0.92)	0.84 (0.70, 0.94)	0.84 (0.70, 0.94)		

¹The experimental unit for the models, RegLog, GLM, RF and XGBoost was observations (i.e., stool samples); whereas the experimental unit was infants for the GLMM model.

²GLMM: generalized linear mixed model. In GLMM, participants are the experimental unit. Lab, city, and participants identify served as (crossed) random-effect variables while the infant gender and genera abundance as fixed-effect variables in the model.

³Microbe predictors used in all the models consist of f_*Rikenellaceae.g_*, g_*Blautia*, g_*Oscillospira*, g_*Haemophilus*, and g_*Phascolarctobacterium*.

Interpretation and biomarkers

GLMM base model: AUC 0.82 (0.70, 0.92) on test set

Existing microbiota-based ML models

Outcome	Predictor	AUC-ROC	Algorithm	Sample size	Region of cohort	Year of publication
obesity status	16S-DNA seq of gut microbiota	0.88	regularized logistical regression	101 adult female twins	US	2010
obesity status	functional genes of gut microbiota	0.78	unknown	265 adults	Denmark	2013
obesity status	16S-DNA seq of gut microbiota	0.51-0.65 (CV-AUC)	random forest	varying with datasets	varying with datasets	2016
obesity status	16S rDNA seq gut of microbiota	0.60 (CV-AUC)	random forest, SVM etc.	319 adults	US	2017
obesity status	pathway module of gut microbiota	0.70-0.80 (CV-AUC)	random forest, SVM etc.	136 adults	US	2017
obesity status	16S rDNA seq gut of microbiota	0.70	random forest	212 newborns	Finland	2020

Take-home message

- Models containing microbial features can predict obesity trajectories for preschoolers with good performance (AUC 0.82).
- Machine learning models have identified robust fecal biomarkers for the obesity trajectory.
- Microbiome-based ML models we built may be interpretable.