

Xin (David) Zhao¹, Kelsea M Drall¹, Sarah Bridgman¹, Mandal Rupasri¹, Allan B Becker³, Piush J Mandhane¹, Theo J Moraes², Malcolm R Sears⁵, Stuart E Turvey⁴, Padmaja Subbarao², James A Scott², Anita L Kozyrskyj¹ ¹University of Alberta, AB, Canada; ²University of Toronto, ON, Canada; ³University of Manitoba, MB, Canada; ⁴University of British Columbia, BC, Canada; ⁵McMaster University, ON, Canada

Introduction

- Health Canada recommends exclusively breastfed, healthy, term infants be supplemented with vitamin D. Vitamin D liquid formulations contain nonmedicinal excipients, such as glycerin (glycerol) or propylene glycol (PG).
- Digested glycerin and PG are fermentable by gut microbiota, producing metabolites likely influencing the host.
- In this respect, we sought to assess infant fecal samples for the presence of glycerin and PG levels in relation to vitamin D supplementation and their association with gut microbiota and metabolites.

Objective

investigate the non-medicinal impact Of 0 ingredients of infant vitamin D drops (i.e. glycerol and PG) on fecal microbiota and metabolites of clinical relevance.

Methods

- Fecal samples and vitamin D supplementation breastfeeding status information were and obtained at 3-month age for 575 infants from the Healthy Longitudinal Infant Canadian Development (CHILD) Study.
- Fecal metabolites and microbiota were quantified using Nuclear Magnetic Resonance Spectroscopy and 16S rRNA sequencing, respectively.
- Multiple linear and logistic regression were used to determine the association between vitamin D supplementation with fecal levels of glycerol and PG, adjusting for covariates.
- was applied to evaluate Spearman analysis correlations between taxa, metabolites and the fecal glycerol and PG.

Non-medicinal excipients in infant vitamin D drops, fecal microbiota and their metabolites at 3 months of age

Results

Tab 1. Multiple linear regression for prediction of fecal PG, glycerol concentrations (µmol/g) from use of infant vitamin D drops

Predictor	Fecal PG ^a		Fecal glycerol ^b	
ricultur	Crude β	Adjusted β	Crude β	Adjusted β
Infant vitamin D drops				
No (ref.)				
Yes	1.1 (0.8, 1.4)	0.4 (0.0, 0.7)	-0.2 (-0.4, 0.0)	-0.23 (-0.4, 0.0
	Covaria	ates		
Feeding modes				
Exclusive breastfeeding (ref.)				
Partial breastfeeding	-1.0 (-1.4, -0.7)	-0.9 (-1.3, -0.6)	-0.3 (-0.5, 0.0)	-0.4 (-0.6, -0.2)
Exclusive formula	-2.4 (-2.7, -2.0)	-2.2 (-2.7, -1.8)	-0.0 (-0.2, 0.2)	-0.3 (-0.5, 0.0)
Introduce solids at 3 months				
Yes (ref.)				
Not yet	1.0 (0.2, 1.8)	-0.1 (-0.8, 0.6)	-0.1 (-0.5, 0.3)	0.02 (-0.4, 0.5)
Age of stool collection	-0.2 (-0.3, -0.1)	-0.3 (-0.4, -0.2)	-0.02 (-0.1, 0.1)	
Mother's education				
Less than high school (ref.)				
High school	0.3 (-0.2, 0.8)		-0.1 (-0.4, 0.1)	-0.1 (-0.4, 0.1)
College or University	1.1 (0.6, 1.6)		-0.4 (-0.6, -0.1)	-0.31 (-0.6, -0.
Birth modes				
Vaginal no IAP (ref.)				
Vaginal with IAP	0.1 (-0.4, 0.5)		-0.01 (-0.2, 0.2)	
Elective CS	-0.1 (-0.7, 0.5)		-0.2 (-0.5, 0.2)	
Emergency CS	-0.3 (-0.8, 0.2)		-0.2 (-0.4, 0.1)	
Maternal pre-pregnancy weight				
Underweight (ref.)				
Normal	-0.8 (-1.9, 0.4)		0.5 (-0.1, 1.1)	
Overweight	-0.8 (-1.9, 0.4)		0.2 (-0.4, 0.8)	
Obese	-1.4 (-2.5, -0.2)		0.4 (-0.2, 1.0)	
Maternal postnatal vitamins				
No (ref.)				
Yes	0.1 (-0.5, 0.8)		-0.2 (-0.5, 0.2)	
Intercept		1.4 (0.5, 2.4)		0.8 (0.3, 1.3)
R ² , adjusted		0.3		0.03

^a Fecal PG was transformed using the formula, In (PG + 0.030667) to reduce data skewness. The range of original PG in analytical samples were 0.00 to 30.36 (µmol/g). ^b Fecal glycerol in the model was transformed using the formula, In (Glycerol + 0.4052815) to reduce data skewness. The range of original glycerol in analytical samples were 0.00 to 19.68 (µmol/g).

Acknowledgements

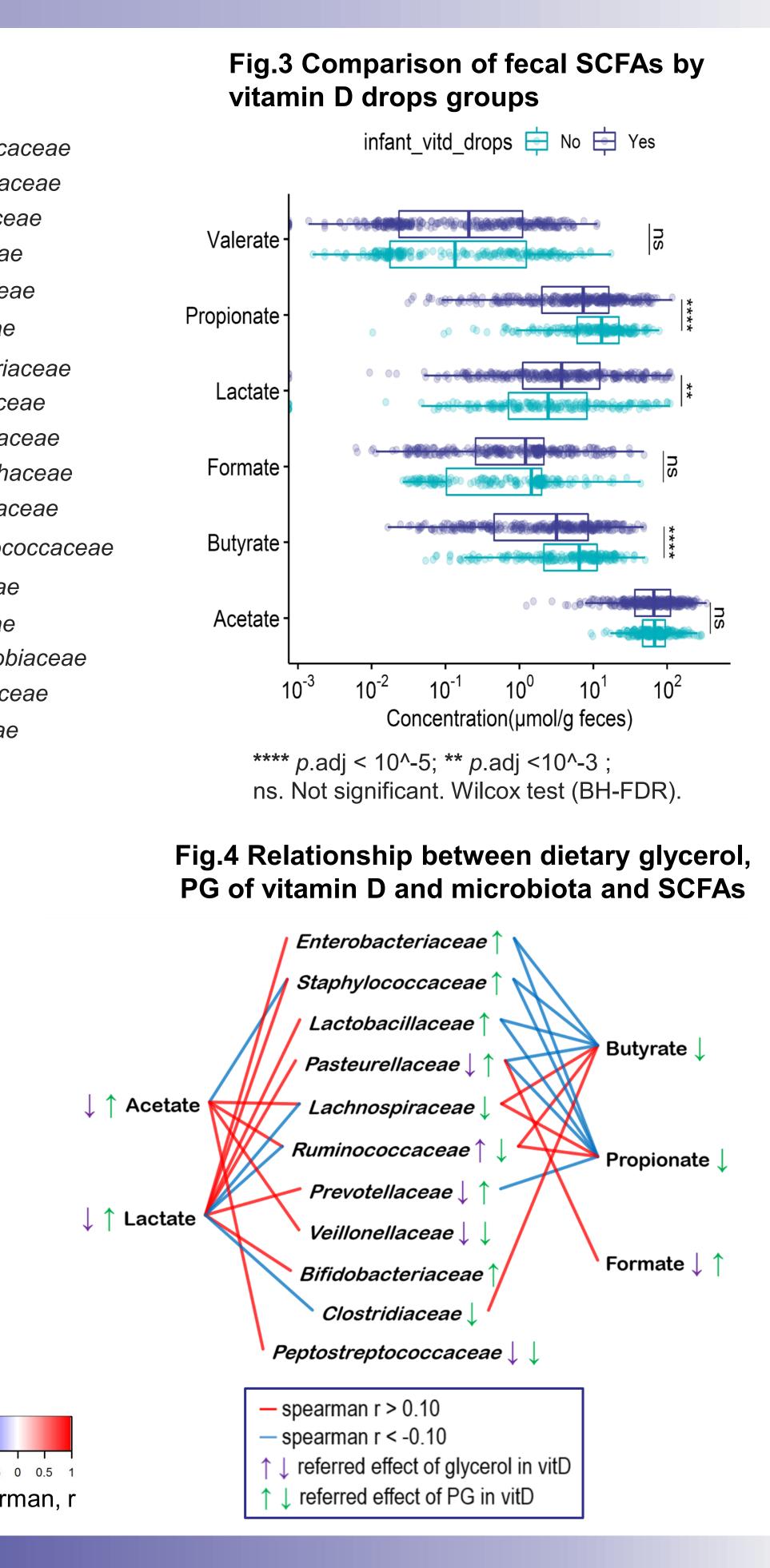
thanks Sincere to the CHILD team research and every study family.

women & children's health research institute

Fig.1 Correlation analysis of fecal PG, glycerol and microbiota

		0.22	0.3
		0.17	0.29
		0.19	0.3
0.2		0.26	
0.25	0.24	0.16	0.38
0.2			
		0.03	0.28
		-0.27	-0.37
	-0.42	-0.33	-0.46
		-0.12	
	0.01		
0.16		-0.16	-0.25
		-0.15	
		-0.24	
	-0.13	-0.28	
Neerol in	all no vito	P ^G ith yes vith	PG.iD no vito
Nessit	ince all	of Shit	NU

Staphylococcaceae Bifidobacteriaceae Lactobacillaceae Prevotellaceae Pasteurellaceae Neisseriaceae Enterobacteriaceae Lachnospiraceae Ruminococcaceae Erysipelotrichaceae Coriobacteriaceae Peptostreptococcaceae Veillonelaceae Clostridiaceae Verrucomicrobiaceae Enterococcaceae Moraxellaceae


Fig.2 Correlation analysis of fecal PG, glycerol and SCFAs

	2000 - 2013 (C			21	
	0.48	0.56	0.6	0.77	Lactate
	0.68	0.62	0.46	0.43	Formate
	0.52	0.33	0.25	0.21	Acetate
	0.2		0.25	0.28	Succinate
	0.17	0.24	-0.28		Valerate
			-0.42	-0.45	Butyrate
			-0.4	-0.61	Propionate
- W	ves git	Ncerol in	P ^G ith V ^{es} vith	P ^G , no vitil	-1 -0.5
G `'	yer G		Yer	fit.	Spearr

Conclusions

- butyrate.

 Infants using vitamin D drops may have higher fecal PG, but lower fecal glycerol on average at 3 months, adjusting for feeding modes, solid foods at 3 months, age and maternal education. Vitamin D drops use may influence microbial metabolism (synthesis and hydrolysis) of glycerol and PG in the infant gut, resulting in increased lactate, but reduced propionate and

Dietary PG may be associated with changes in abundance of probiotic bacteria, such as Bifidobacteriaceae.